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J. Phys.: Condens. Matter 2 (1990) 3287-3301. Printed in the UK 

Transfer matrices and conductivity in two- and three- 
dimensional systems: 11. Application to localised and 
delocalised systems 

J B Pendry 
The Blackett Laboratory, Imperial College. London SW7 2BZ, UK 

Received 29 September 1989 

Abstract. In the previous paper a formalism was established for the calculation of intensities 
reflected from a disordcred system, and hence for the transmitted intensities via the unitarity 
relationship. Here we show how the method can be applied to calculation of the conductivity 
of a three-dimensional (3D) system in the limiting case of weak disorder. First the one- 
dimensional ( ID) situation is discussed and canonical models developed for the classical 
diffusive case and for the quantum localised case. Our 3D theory can then be mapped onto 
the classical ID case in the limit of weak disorder, and onto the quantum ID case in the limit 
that all laterial hopping is eliminated and we have a collection of independent ID systems. 
Thus our theory has the power and flexibility to describe both localised and delocalised 
systems, a unique advantage in discussing more complex effects. 

1. Introduction 

In paper I of the series (Pendry 1990) I introduced a formalism to calculate reflection 
coefficients of 3~ disordered quantum systems. From the unitarity relationship for a 
purely elastic system this also enables us to calculate the transmitted intensities 

rr+ + tt+ = 1 (1) 
and hence the conductance of a system with dimensions L X L, 

G = tr tt+ . 
In this paper the formalism is applied to the case of weak disorder where we expect 
delocalised behaviour, the conductance obeying Ohm's law, 

G L ,  -- const/L,. (2) 
There are several objectives in the paper. The first is to demonstrate that our 

formalism is tractable and can be applied to give sensible results in situations that we 
can understand from other methods. The second is to show for the first time that a 
transfer matrix method can correctly describe the delocalised regime. 

This latter point is not a trivial one because transfer matrices introduce the thickness 
of the system by exponentiation, so that we have a formula for the conductance of the 
form 

GL,  -- (alXLzlb> (3) 
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where X is a transfer matrix. Thus transfer matrices describe in a natural way the 
exponential decay of conductance with thickness characteristic of a localised regime. 
Some subtle juggling of the spectrum has to take place before delocalisation can be 
accounted for. 

General background papers to the localisation problem can be found in the pro- 
ceedings of the 1984 Braunschweig conference (Kramer et al 1985). References to the 
current approach are to be found in paper I. 

Our hope is that, once we have shown how to describe this delocalised behaviour, 
the natural affinity of the transfer matrix for localisation will put within our grasp a 
microscopic quantitative description of the Anderson transition. There is considerable 
controversy over the critical exponents at the transition, those exploiting scaling (Abra- 
hams et a1 1979) or renormalisation-group methods (Wegner 1976) suggesting an 
exponent of 1 in 3 ~ ,  and other making numerical simulations (Schreiber et a1 1989) 
reporting 4 for systems of the same general character. A model of the transition that 
could be solved analytically would be invaluable in resolving this debate. 

As I have indicated, the solution of the delocalised problem by transfer matrix 
methods can be expected to be non-trivial. Hence the paper begins with a treatment of 
the very simple problem of diffusion of a classical fluid in ID. This provides the canonical 
form of a delocalised transfer matrix and the 3D quantum problem is then solved by 
transforming the 3D transfer matrix into the 1~ form. The classical 1~ transfer matrix and 
its eigenvalues are contrasted with the ID quantum case, which shows only localised 
behaviour. 

2. Transport in one dimension-a classical model 

In a transfer matrix approach, transmission of electrons through a layer of disordered 
material is represented by exponentiation of a set of eigenvalues. Thus the length 
dependence of the conductance is naturally exponential: something special has to happen 
in the mathematics to obtain Ohm’s law, G L ,  = const/l,, from a set of exponentials. 
However, the weak scattering case, where we known that Ohm’s law holds, is well 
understood from other approaches. In this section we go through the exercise of solving 
the simplest problem that exhibits Ohm’s law using the methods of symmetrised transfer 
matrices. 

Let us imagine a continuous fluid flowing through a pipe that has a series of obstacles 
in it. At the nth obstacle a fraction r, of the fluid is reflected, and a fraction t, transmitted. 
We assume current conservation, i.e. 

t ,  + r ,  = 1. (4) 

In order to simplify the model as far as possible we assume that 

r ,  = r t, = t. ( 5 )  

It might be imagined that this simple model, devoid even of fluctuations, is completely 
trivial. It is not trivial, as we shall show, and it will serve as the archetypal diffusive 
system onto which we shall ultimately map the quantum problem. 

The transfer matrix can be constructed in the usual way. Between the (n - 1)th and 
nth layers there is a current a,’ flowing to the right, and a current a; flowing to the left. 
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The transmission and reflection coefficients of the nth layer relate amplitudes as follows: 

a,++l = tu,' + ra;+l 

a; = ra,+ + ta;+l 

(6a) 

(6b) 

or in matrix form 

It follows by matrix inversion that 

an + 1 = Tan 
where 

Re-expressing tin terms of r we obtain 

We can use T to calculate the transmission coefficient of L, layers, tLz. From the 
properties of transfer matrices, 

L2 

TL* = rI Ttl 
n = l  

where TL, is the transfer matrix for a stack of L, layers. From the definition of the 
transfer matrix it follows that 

tLf = (1 - rLi)-l = (TL,)22. 

Provided that we can find the eigenvalues of T we can obtain 

where U' and U' are the left and right eigenvectors of T. We can exploit the fact that there 
are no fluctuations in the system to invert l/t ,  i.e. 

We now arrive at the interesting fact that T is a matrix with degenerate eigenvalues 
and parallel eigenvectors. This curious fact is crucial to removing the exponential 
dependence on 1,. First we must remove the singularity that this degeneracy imposes on 
the system. We do this by defining a new matrix 

1 (1 - 2r)/(1 - r )  

(-r + &)/(I - r) 
(r + a)/(I - r) 
1/(1 - r) 

T ( 4  = [ 
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and taking the limit a+ 0. The eigenvalues of T(a )  are 

e, = 1 2 a = exp(2a)  

with the corresponding eigenvectors 

U', = [I, -{r + a(1 - r)}/{r T a(1 - r ) } ] .  

Evaluating equation (13) and assuming a small gives 

Assuming that the conductance 

GL, = const' t 

then we retrieve conventional Ohm's law behaviour from our model, 

GL, = (1 + [r/(l - r ) ]L , } - l  ̂ I t/(rLz). (20) 

Again, since this model contains no statistics, we can calculate any power of GL, simply 
by raising GL, to the appropriate power. This result would not be true if we had calculated 
an average for GL,. 

Now let us formulate the problem in a more sophisticated fashion, one that bears 
closer resemblance to our genralised transfer matrix approach used in the quantum case 
(see paper I). 

Matrix elements of the symmetrised Nth-order transfer matrix can be written as 
min(i,j) 

x r =  i! (N - i)! T ; ~  T ~ ; P  T ~ ; P  T g - i - i + p  
p = o  p ! ( i  - p ) !  (j - p ) !  (N + p - i - j ) !  

where the subscripts i and j run from 0 to w. The general form of X is 

- NrLztifi [N(N - 1)/2]rZZti: 

ti;N - Nrt,tL: . . . 
. . .  * . .  
* . .  . . .  

Hence we can find any power of r L ,  from this matrix, 

r i ,  = lim tTZ(Xi)iz)iO 
N+ 0 

where Xf, is found in the usual way, 
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and if we make the weak scattering approximation so that we can neglect powers of r 
higher than the first, then X N  has the form of a tridiagonal matrix 

1 + Nr 

r 

0 

. . .  

. . .  

. . .  - 

- N r  

1 + ( N  - 2)r  

2r 

. . .  

. . .  

. . .  

I 
I 
I . ( .  
I I 

0 

- ( N - 1 ) r  I 0 I .  
I 

1 + ( N - 4 ) r ~  - ( N - 2 ) r ~  0 
I I 
I . . .  , . . .  . . . .  
I 

. . .  ~ ir I 1 + ( N  - 2i)r 
I I 

. . .  I . . .  , . . .  
I 

In this case we have already calculated the result, 
- 

= r:z = [I - {I + ~ ~ / ( i  - r ) l ~ , ) - q ~ .  
We note that diagonalisation of X is likely to be a non-trivial X rcise because the 
diagonal elements are degenerate to zeroth order in r ,  thus precluding perturbative 
solution. This difficulty has been circumvented because the quantities in which we are 
interested can be calculated by other means in this instance. Even if we are faced with a 
more intractable matrix, provided that we can reduce it to the canonical form (25), the 
solution can be obtained immediately from the above. 

3. Transport in one dimension-the quantum case 

It is an interesting exercise to contrast the transfer matrix that describes classical diffusive 
behaviour in ID with the quantum version that describes only localised behaviour, 

The quantum transfer matrix becomes 

L e  have used time-reversal invariance to reduce the matrix to a simplified form. In this 
expression the t and r refer to amplitudes not to intensities. Again we construct a 
generalised transfer matrix 

min(i, j )  i!  ( N  - i)! 
p = o  p!( i  - p ) !  ( j  - p ) ! ( N +  p - i - j ) !  

X Q T =  2 

and for a system of length L, this matrix takes the form 



3292 J B Pendry 

- 
. . .  
* . .  
. . .  
* . .  
. . .  
. . .  - 

Taking the complex conjugate we get 

[ N ( N  - 1) /2]rZ: t t ;N 

. . .  
(30)  

. . .  

- N r  2,tZ iN 
tL * 2 - N  2 - NrZt t! iN 

. . .  

* . .  

. . .  * . .  

XQt': = 

Finally taking the direct product of these matrices (see Pendry and Kirkman 1984) and 
arranging the subscripts in such an order that the resulting matrix has the form 

2 * * - N , .  t-N t y t i ;  N Y L , ~ L ,  L ,  L ,  

L ,  L ,  rL , t i f  . . .  . . .  
L ,  L ,  r ~ , t L ;  - NrZt t?;N)( t i ;N - N r i , t L f )  

, . * 2 t * - N  2 
. . .  ' * I (31) 

,.* t*-N 

. . .  . . .  . . .  

XQLY 8 XQ?, = 

we can obtain powers of lrL,I2' from 

lrL,12i = lim (XQZY 8 X Q F , ) , .  
N -  0 

As before we wish to use the fundamental formula 

X Q i Y  8 XQ?, = n XQ,*N 8 X Q f .  
Lz 

n = l  
(33)  

We take a simple model of a weakly disordered ID chain in which the atomic energies 
are disordered by a small amount an,  so that 

l / t n  = (1 - is;) exp(ik) 

rn/tn = -3; exp(ik) (34)  
6; = 6,/2sin(k) 

where k is the wavevector for an ordered system. Using these expressions we can 
calculate 

lim XQZN €3 X Q f  
N -  0 

6l2N2 

1 - 26'2 

4612 

. .  

. . .  

0 

6l2 

1 - 86'2 

. . .  

. . .  

. . .  
0 

46'2 

. . .  

. . .  
0 

. . .  
1 - 2j26'* 

. . .  

. . .  

. . .  

j 2 a r 2  

(35)  

. . .  . . .  * . .  . . .  . . .  
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and from our formulae for the reflection coefficient and its relationship to the trans- 
mission coefficient the result for (ti2 and its moments follows (Pendry and Kirkman 1984): 

(ti2 = { 1 / [ 2 ( ~ ~ , 6 ' ~ ) ~ ' ~ ] }  exp( - ~ , 6 ' ~ / 4 )  

(iti2)N = jti2[r2(N - h ) r 2 ( i ) ] / [ r 2 ( i ) r 2 ( ~ ]  

(36) 

(37) 

where r is the gamma function. The first of these formulae depends on the assumption 
that S 2  is small; the second is a general result for ID systems valid in the limit of large L,. 

Of course our arrangement of the subscripts hides other terms of this matrix in which 
(XQ,), is not paired with (XQ," ) j j  along the diagonal. However, these terms are not 
degenerate with the ones shown above and therefore can be neglected provided that S 2  
is small. 

One purpose of deriving (35) is to compare and contrast it with the classical diffusive 
case. Note the similarities: both (25) and (35) describe a tridiagonal matrix; neither 
contains any phase information. Yet the differences are crucial: in the quantum case 
(35) contains terms increasing down the matrix as j 2 ;  in contrast the classical case has 
terms increasing only as j .  We know that, in the quantum case, localisation occurs and 
fluctuations are extremely strong, whereas, in the particularly simple classical model we 
have chosen, there are no fluctuations. It is the rapid increase of matrix elements in the 
quantum case that generates these fluctuations. 

I shall state without proof several interesting results concerning the matrices (25) 
and (35): 

(i) both have a continuous spectrum of eigenvalues; 
(ii) in the quantum case the upper limit on the spectrum is 1 - St2/4; 
(iii) in the classical case the upper limit of the spectrum is 1; 
(iv) if we try to calculate eigenvalues numerically by truncating the infinite matrices 

to dimensions m X m, then the eigenvalues are in error due to the truncation by order 
l/ln2 m in the quantum case; and 

(v) in the classical case the error is of order l /m.  

4. Model for a three-dimensional disordered system 

In paper I we considered the 3D quantum case and showed that the 3~ transfer matrix 
has the form 

Now we consider a specific model for T. The system is taken to consist of L, planes of 
atoms stacked along the z direction, each plane containing a square L x L array of 
atoms. A single tight-binding level is associated with each atom, energy E,,, where r = 
( x ,  y )  labels the atoms in the plane and n labels the plane. The atoms are coupled together 
by hopping integrals, V in the plane and V' out of the plane. A detailed description of 
the model is given by Pendry and Kirkman (1984). Here we shall work in a basis set 
consisting of the Bloch waves of the ordered system, wavevectors given by 

exp(iK,) = [I?, + i(--l?: + 4)1'2]/2 

rk = E,,/v' - z(v/v') cos(23tq - 2(v /v7  C0S(23tky). 
(39) 

(40) 
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In this basis the four quadrants of T are given by 

where 

9 + 0  

q = o  
Dk- k' Dk*- k' + g  = { :2 /L2  

and 
a2 = - (E,,>2]/V'2. 

(43) 

(44) 
We shall further restrict the model to the case 

V ' % V  (45) 
which simply means that electrons are much more mobile in the z direction than they 
are within the planes. If we consider energies not too far from the centre of the band, 
this implies that all the K are real, and that 

Ak 2: 1/(2i) (46) 
simp!ifying the algebra somewhat without iosing the essentials of the problem. 

The next task is to construct the Y matrix, which is an array of determinants formed 
by choosing all possible selections of L2 rows and L2 columns from the 2L2 x 2L2 matrix 
T. To this end we arrange the determinants into hierarchies characterised by the number 
of the rows or columns chosen from the second set of L2 rows or columns of T. We shall 
assume that 

6 2 6 1  (47) 

and neglect terms smaller than d2. The first choice is zero rows and columns from the 
second half, 

Y(0; 0) = det(T++). (48) 

Y(kIk2; 0) = det(T++)Dk2-k1/2i. (49) 

Y(0; kl; k;) = -det(T++) eXp(*k; + *k;)D:k;+k$i. 

The second choice involves omitting row kl from the first set and choosing instead row 
k2 from the second set, 

In the third choice we omit column k; from the first set and choose instead column k; 
from the second set, 

(50) 

The fourth choice omits row k, from the first set and chooses row k2from the second set, 
omits column k; from the first set and chooses column k; from the second set, 

Y(k1,  k2; k l ;  k ; )  = det(T++) eXp(%k'l + xk;) [(I - a2/2)6k~k'16k2k; 

+ 6klk;DkZ -k;/2i + 8k2k;D-ki+kl/2il. (51) 
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This is the minimum number of choices needed to get a consistent picture of the transfer 
matrix for reflectivities. There are other contributions to the Y matrix, which involve 
multiple choices from the second set of rows and columns, but we shall not include them 
in our calculations. 

Next we must construct the X matrix. The lower-order terms are given by 

X(0;O) = YN(0;O) (52) 

X(O;k;,k;) = ~N(O;O)D?k.+k; exp(iKk; + iKk;) (53) 
X(k; k;; 0) = YN(O; o)Dk2 -k l  (54) 

+ (N - 1) YN-2(0; O)Y(O; k ;  k$)Y(k1k2; O ) ]  

X(k1, k2; k ; ;  k ; )  = exp(iKk; + iKk;)[YN-l (O;O)Y(k,, k2; k ; ,  k i )  

- 

L1 exp(%k; + %k;)YN(O; 0){(1 - d2/2)6kik16k;k2 
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where the first factor represents the number of different choices of the 2n independent 
k, and the second factor recognises that any of the n pairs, klk2, can be permuted among 
the n Y matrices. 

The equations given above define X ,  but we shall be interested in the modulus of the 
reflections coefficient and therefore we need to construct X 8 X * .  In the following 
equations we have taken averages over fluctuations in D: 

and 

X ( n , k l k 2 ,  k 3 k 4 , .  . . ; n + 1, k;k$, kiki, . . .) 

The diagonal block (60) appears to be complex, but in reality is rather simple: the off- 
diagonal terms within this block allow for all possible scatterings between all possible 
pairs of excitations, but conserving momentum parallel to the layers. These are the 
terms that will describe the peaks in forward and back-scattering, the latter described 
by the maximally crossed diagrams (Bergman 1984). We shall not consider them further 
here. 
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5. Transport in three-dimensions-a classical model 

The transfer matrix for the 3~ case in the complex entity we would expect in order to 
describe the rich variety of phenomena that can occur. Our objective in this section is 
to show that in the weak-disorder limit a transfer matrix approach gives the characteristic 
l/Lz Ohm’s law behaviour. The strategy is to show which terms can be left out of the 3~ 
matrix when the disorder is weak, and then to map the remaining terms onto the ID 
classical problem, which we have already solved. We shall show that the ID classical 
conductivity can be identified with the conductivity per unit area of the 3D system. 

We take a minimalist approach in which only those terms which have no phase 
information are retained. Out justification is that we shall be concerned with the weak 
scattering limit in which the solutions are of a classical diffusive nature, and we expect 
phase information to be irrelevant. In the case of the diagonal elements this means that 
every one of the 2n values of k in X must be matched with a corresponding kin X*, which 
ensures that no phases appear in X €9 X* and all the elements are real. 

The diagonal blocks have degenerate elements on the diagonal, 

(1 - S2n). (63) 
Each nth-order diagonal element is coupled to (L’)’ elements in the (n + 1)th-order 
diagonal block via a matrix element, which after averaging is 

6’n2/(4L2) (64) 
and to (L‘)’ elements in the (n - 1)th-order diagonal block via a matrix element, which 
after averaging is 

6’/(4L’). (65) 
Putting these elements together in a diagram simplifies this otherwise confusing picture, 

X @ X *  = 

, . .  . . .  . . .  . . .  
6’/(4~’) (I - d2n/2)6,,, 6‘n2/(4L2) 0 

+ off-diagonal 
coupling 

0 a2/4L2 [ l -  6’(n + 1)/2]6,., 6’(n + 1)’/(4L2) 
+ off-diagonal 
coupling 

0 0 62/(4L’) * . .  

We must consider one further portion of this matrix: that which contains the reflection 
matrix. We saw in paper I that the (0, 1) block of X N  contains the elements 

Nr - k ;  - k ;  

and the (0 , l )  of X €9 X* contains 

Furthermore, the subscripts are restricted by our selection of elements to those which 
occur when we take the matrix product tr rr’. This will be important when we examine 
the results of the projection operation discussed below. 
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X @ X *  can be reduced to a real symmetric matrix by a block-diagonal unitary 
transformation based on 

Qnn, = Snng(n - l)!. (69) 
Since the reflection coefficient remains bounded as L, goes to infinity, the spectrum 
of X 63 X* cannot contain an eigenvalue of modulus larger than unity. If unphysical 
oscillations with L,  are to be avoided, then the largest eigenvalue must be real. Therefore 
we have a variational principle: if we guess a trial form for the eigenvectors of X 63 X* 
we can use our guess to estimate the eigenvalue, and if by chance our estimate turns out 
to be unity, we know that we have made a good guess for the eigenvector. This result is 
not true of the general form of X 63 X* because it is neither real symmetric nor Hermitian. 

We are ready to transform X 63 X* to the equivalent ID matrix. We select from the 
nth-order elements those for which the k ;  are a permutation of the k l ,  and the k;  are a 
permutation of the k2. Next we introduce the restriction that at least one pair k,kz in X 
must be matched with a corresponding k r k ;  pair in X*.  The nth-order block on the 
diagonal has dimensions 

L4"/n 

which comes about from the fact that we have 2n variables k each of which can take L2 
values. Each pair klk2 can occur in any order, factor of l /n!,  remembering that one of 
the pairs is fixed; (n  - 1) of the k2 can be permuted among the pairs to generate a total 
of (n  - l)! combinations. Our trial form of eigenvector consists of reducing the nth- 
order blocks by a projection onto this subspace of the form 

U: = { n / [ n ! ( ~ ~ ~ ) ' / ~ ] } ( ~ ,  I ,  I ,  I , .  . .  terms)T (70) 

U!, = { n ! / ~ 4 n ) 1 / 2 } ( 1 ,  I, I ,  I ,  . . .  ~ ~ " / n  terms). (71) 
Within this space our matrix is now tridiagonal rather than block tridiagonal, 

. . .  . . .  . . .  . . .  

(72) 

. . .  . . .  

nd2/4 I-nd2/2 nd2/4 0 

(n  + l)S2/4 1 - ( n  + l)S2/2 (n + l)S2/4 0 

* . .  

Comparing with the ID equations we see that our objective of transforming the 3~ 
quantum problem to the ID classical problem has been achieved in the weak scattering 
limit, provided that we identify 

r = d2/4. (73) 
As we hoped, this matrix has an eigenvalue spectrum extending up to a maximum of 
unity. 

Now let us proceed to calculate the reflectedintensity, containedin the (0 , l )  element 
of (X 8 X*),,, , 

"* ( r L , ) - k ; - k ; ( r ~ , ) l k i - k , / L 2  
kik; 

= NN" tr rL,rt,lL2 (74) 
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where tr(1 - rL,r t , ) /L2 is the conductance of the system per unit area and trans- 
formation relates this quantity to the classical reflectivity, r L  . 

The expression for (X €3 X*),,, given above refers to a single layer of the 3D solid. 
Putting together L,  of these layers is achieved by taking the L, power of this matrix, 
which can be done using the methods of the ID problem. In fact we are interested only 
in the first row because that is where the reflection matrix is held: 

= 1 - (1 + [(S2/4)/(1 - S2/4)]LZ}-l 

[l - 4/(S2L,)]. 

Recognising that 

tr rL,r t ,  = tr(1 - tL , t t , )  

= L2(1 - GL,) 
- 

where GL, is the conductance, we obtain 

G L ,  = 4/(S2L,). 

(75) 

(76) 

(77) 

In other words, even quantum systems obey Ohm’s law when the disorder is weak 
enough. Our 3~ transfer matrix approach has correctly reproduced this result. The next 
challenge is to see if it can describe the localised regime. 

6. Transport in three dimensions-the quantum case 

In our model we have the option of switching off the hopping between the parallel chains 
comprising the 3~ array and thus reverting to an array of independent ID systems. We 
should be able to retrieve from our formalism the ID limit, which as we know represents 
localised behaviour. Again our objective will be to transform the 3~ equations to the ID 
touchstone, in this case the equation (35). 

Returning to the 3~ transfer matrix equations, (60)-(62), we see that in the 1~ limit 
there is no dispersion of Kk with k. As a result all the phase factors are unity and instead 
of a subset of diagonal elements being degenerate, all of them are now degenerate to 
order d2  and they are all coupled together by various off-diagonal elements. Once 
again exploiting the separable nature of the off-diagonal elements, we implement a 
transformation to a new basis set defined by the following right and left vectors within 
the space of the nth-order block: 

Again, because of the separable property, the matrix outside the space defined by these 
vectors becomes trivially diagonal and we shall ignore this space. Within the non-trivial 
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space our matrix is now tridiagonal rather than block tridiagonal, 
. . .  * . .  . . .  

. . .  ::I (79) 
rr : . . .  . . .  . . .  

n2d2/4 1 - n2d2/2 n2a2/4 0 

( n  + 1)262/4 1 - ( n  + 1)262/2 (n  + 1)262 0 ' 

(XQ '8 XQ*),,, = 

Note that the crucial distinction between (79) and the corresponding delocalised 
equation (72) is the occurrence of n2 rather than n. Comparing with the ID equation (35) 
we see that our objective of transforming the 3~ quantum problem to the ID classical 
problem has been achieved in the limit of independent chains. 

Now let us proceed to calculate the reflected intensity and its moments. The first 
column of (XQ '8 XQ*),,, contains these quantities. As we have shown the nth block of 
the first column consists of terms such as 

r k l k z r & k 2  * * rk2n+lk2n+zrk*;,+lk;,+2 (80) 

Much the same as we found in equation (70) except that now all values of kl . . . 
are present. The projection vectors lead to a sum over all the subscripts, 

(81) *. (xQ '8 XQ*),O = [(n!)2/Ls"'1i2] ,E, 
k l k l k z k 2  ... 'klk2'k*;k; ' * * rkzn+ik*n+2rk2n+lk; ,+2  

which simply represents the Fourier transformation of each of the r k l k 2 .  , . and 
k,*& . . . into a real-space representation, 

roo = C r k l k 2 / ~ 4  (82) 

rh = r ; i k ; / ~ 4  (83) 

k i k 2  

k i k ;  

being the reflection coefficient and its complex conjugate of the ID chain located the 
origin in real space. Another transformation with a different phase factor would extract 
another statistically identical chain. 

Therefore we have proved that in the limit of no interchain coupling our 3~ formalism 
yields the proper ID equations for the statistics of the reflection coefficients of the 
individual chains. 

So we have shown that 

(XQ '8 XQ*)no = (roor&)" 

The expression for (X @ X*),,,, given above refers to a single layer of the 3D solid. 
Putting together L, of these layers is achieved by taking the L, power of this matrix, 
which can be done using the methods of the ID problem. In fact we are interested only 
in the first column because that is where the reflection matrix is held: 
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where GQL, is the quantum conductance, we obtain 

GQL, = { ~ / [ ~ ( J T L , S ’ ~ ) ~ ’ ~ ] }  exp( -L,6’*/4) (87) 

the well known result for ID systems. See Pendry and Kirkman (1984), where other 
references to this result will be found. 

7. Conclusions 

We have applied the symmetrised transfer matrix formalism to a 3~ system. The method 
easily and naturally describes both the conducting and localised regimes: in the former 
case by neglect of any terms containing phases, and in the latter case by averaging over 
phases. Near the mobility edge a more complex solution to our equations will be 
necessary because of the known importance of the phases. In particular, in 2 ~ ,  the phases 
are important even for weak disorder. We can in fact identify the maximally crossed 
diagrams, which give the first indications of the importance of the phases, but these must 
be the topic of a later paper. 

Thus we have a powerful and general approach to the problem of transport in 
disordered systems. I envisage that the method can be used to answer not only subtle 
questions of correlations in the wavefield in the vicinity of these limits, but also the 
crucial range of parameters around the mobility edge. 

Here is a method that has been shown to contain both localised and delocalised 
aspects, and gives the known solutions to limiting cases. Surely it is an ideal candidate 
for exploring the region in between? 
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